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ABSTRACT 
 

As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct 

formulation obtained from solving the time-independent Schrodinger differential equation in 

the delta-potential-well function to update the solution candidates’ positions. In this case, the 

local attractors as potential solutions between the best solution and the others are introduced 

to explore the solution space. Also,  the difference between the average and another solution 

is established as a new step size. In the present paper, the quantum teacher phase is 

introduced to improve the performance of the current version of the teacher phase of the 

Teaching-Learning-Based Optimization algorithm (TLBO) by using the formulation 

obtained from solving the time-independent Schrodinger equation predicting the probable 

positions of optimal solutions. The results show that QTLBO, an acronym for the Quantum 

Teaching- Learning- Based Optimization, improves the stability and robustness of the 

TLBO by defining the quantum teacher phase. The two circulant space trusses with multiple 

frequency constraints are chosen to verify the quality and performance of QTLBO. 

Comparing the results obtained from the proposed algorithm with those of the standard 

version of the TLBO algorithm and other literature methods shows that QTLBO increases 

the chance of finding a better solution besides improving the statistical criteria compared to 

the current TLBO.  

 

Keywords: quantum-inspired evolutionary algorithm; teaching-learning-based 

optimization; population-based algorithm; circulant truss; quantum behaved 

particles; quantum teacher; frequency constraint.   

 
Received:  10 January 2022; Accepted: 11 April 2022 

                                                   
* Corresponding author: School of Civil Engineering, Iran University of Science and Technology, 
Narmak, Tehran, P.O. Box 16846-13114, Iran 
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh)  



A. Kaveh, M. Kamalinejad, K. Biabani Hamedani and H. Arzani 

 

246 

1. INTRODUCTION 
 

The development of optimization methods based on meta-heuristic approaches provides 

efficient tools for solving real complex problems in many disciplines such as engineering, 

computer science, and mathematics. During the recent two decades, Genetic Algorithm 

(GA) [1], Ant Colony Optimization (ACO) [2], Particle Swarm Optimization (PSO) [3], etc. 

have been frequently employed by scientists from different fields to solve various problems. 

Simulated annealing (SA) [4], Shuffled Complex Evolution (SCE) [5], Artificial Bee Colony 

(ABC) [6], Shuffled Frog-Leaping Algorithm (SFLA) [7], Cuckoo Search (CS) [8], etc. 

have been frequently used in vast researchers’ articles. Moreover, developing recent 

optimization methods, such as Differential Evolution (DE) [9], Teaching-Learning-based 

Optimization (TLBO) [10], Bat Algorithm (BA) [11], and Grey Wolf Optimizer (GWO) 

[12], etc. have depicted the attempts in this area. 

Simplicity, flexibility, stochastic mechanism, and local optimum point avoidance surge 

the usage of meta-heuristics methods. Based on the No Free Lunch (NFL) theorem [13], no 

meta-heuristic is suited for solving all different optimization problems. Therefore, although 

a particular meta-heuristic algorithm solves various problems with excellent performance, it 

shows poor results on different complexed problems. Therefore, finding new methods 

interestingly remains active and leads to better novel algorithms or even improved ones with 

some advanced strategy. 

Kaveh et al. have introduced several optimization algorithms and enhanced methods 

applied to the various structural design and analysis problems such as Charged System 

Search (CSS) [14], Ray Optimization (RO) [15], Dolphin Echolocation (DE) [16], Colliding 

Bodies Optimization (CBO) [17], Water Evaporation Optimization (WEO) [18], Thermal 

Exchange Optimization (TEO) [19], Water Strider Algorithm (WSA) [20], Quantum 

evolutionary algorithm hybridized with Enhanced colliding bodies for optimization 

(QECBO) [21]. 

In general, research presented in the field of meta-heuristic algorithms can be divided 

into three categories: proposing a new optimization algorithm, improving the current version 

of optimization methods, and finally applying them to different problems. In terms of 

Optimization algorithm improvement, meta-heuristic algorithms must establish the right 

balance between these two phases, local and global search, to escape a local optimum. Some 

changes are utilized to improve the optimization algorithms’ performance, such as 

hybridization techniques or new step size formulation. Various algorithms are employed and 

combined to produce a new enhanced version of the current algorithm consisting of features 

of two or more methods [21-31]. 

Due to altering some situations compared to primary conditions, computations and 

analysis are inevitable to ensure quality. The universe is an extended computer from the 

viewpoint of Philip Ball and some other physicists. Seth Lloyd has estimated the number of 

computations our universe has done since the big bang [32]. Although the input states and 

output states are orthogonal in a traditional computer, states can be superposition states in a 

quantum computer. Each quantum transformation is a unitary one and vice versa. The 

quantum computers can remarkably give a solution for a particular problem after some 

measurement at the end of the computation. Related societies utilize Grover’s quantum 

search and Shor's number factoring algorithm as milestones to spur a flurry of activity. The 
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topic, quantum search, verified by various experiments, has a leading role in quantum 

computation due to the crucial role of search in many fields, especially computer science 

[33]. 

The high potential of Quantum-inspired evolutionary algorithms driven by the interaction 

between quantum computing and evolutionary algorithms has created new methods to find 

novel optimization algorithms. The original version of the quantum evolutionary algorithm 

(QEA) uses Q-bit individuals in binary code similar to genes in the conventional genetic 

algorithm and quantum computing’s concept and principles. Nevertheless, QEA is not a 

quantum algorithm but a novel evolutionary algorithm [34].  

The approach of quantum-behaved particles, as a novel strategy, uses uncertainty law and 

a distinct formulation obtained from solving the time-independent Schrodinger differential 

equation in the delta-potential-well function to update the solution candidates’ positions. The 

new formulation defines the local attractors as possible solutions between the best solution 

and the others to explore the whole solution space domain. Also, the mentioned formulation 

employs the difference between the average solution and others as a new step size. Both 

local attractors and new step sizes guarantee diversification besides intensification. Using 

the probability rules related to the quantum probability density function creates a new 

formulation for updating the position of solutions, considering the mean of solutions and the 

best one through an iterative process. As a helpful framework, using quantum-behaved 

particles could improve the quality of solutions during a particular optimization algorithm 

with efficient local and global search. The collision bodies optimization (CBO), which was 

presented in 2014 by Kaveh and Mahdavi [17], has been recently improved by using 

quantum-behaved particle features in QECBO [21] to cope with suffering local optimum 

points in some NP-hard problems. Obtained results show that QECBO enhances ECBO’s 

performance with efficient searching. It seems that the QECBO utilizes the rules of 

uncertainty inside classical mechanics. 

In the present paper, the quantum teacher phase is introduced to the Teaching-Learning-

Based Optimization algorithm (TLBO) to enhance the performance of TLBO in such 

complex problems. The TLBO algorithm is one of the most efficient population-based meta-

heuristic developed by Rao et al. in 2011 [10], which simulates the classroom’s traditional 

teaching-learning phenomenon. Although the obtained results from the literature unveiled 

that the TLBO could be an excellent optimization method for some problems, it suffers from 

getting stuck in local solutions in other cases, as mentioned in the No Free Lunch (NFL) 

theorem [13] for another method. As an essential process, teaching-learning impacts 

improving each member’s knowledge in the various community. TLBO’s learning process 

could be found in several societies of humans and animals. The algorithm is made of the 

teacher and learner phases as two fundamental learning modes. TLBO is a population-based 

algorithm where a group of students (i.e., learners) is considered a population, and different 

subjects offered to the learners are analogous to the different design variables of the 

optimization problem. The learner’s results are analogous to the fitness value of the 

optimization problem. Population-based optimization methods use probabilistic and 

stochastic environments as a prominent evolutionary and swarm intelligence-based 

algorithm class. These methods work with tuning some inherent parameters such as 

population size, the number of generations, and others. The TLBO algorithm also works 

with the tuning of the population size and the number of generations only. Rao and Patel 
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explained that TLBO is an optimization method with less-parameter tuning  [35], although 

Črepinšek et al. [36] had expressed another idea. 

QTLBO, an acronym for the Quantum Teaching-Learning-Based Optimization, is 

introduced by defining the quantum teacher Phase instead of the former definition, which 

updates the solution positions using quantum-behaved particles. The QTLBO has been 

recently proposed by Kaveh et al. [37] to consider the quantum framework to improve a 

specific method. Compared to QECBO [21], which uses the updated results of ECBO as 

local attractors in quantum formulation just after ECBO up-gradation, QTLBO utilizes a 

new formulation based on quantum behaved particles to update the position of learners in 

the teacher phase of the TLBO. QTLBO attempts to move the solutions toward the promised 

solution space or the best one. 

Two circulant spatial domes with multiple frequency limitations are considered To 

evaluate the performance of the quantum variant of TLBO. The reason for choosing these 

optimization problems is their highly nonlinear, non-convex, and discontinuous search 

spaces with several local optima [38]. The most common problem with frequency-

constrained optimization seems to be the high sensitivity of vibration modes to shape 

modifications, which means that vibration modes can switch during the optimization 

process, which causes convergence difficulties [39]. In the past few decades, frequency-

constrained optimization problems have attracted the attention of many researchers. 

Bellagamba and Yang [40] were one of the first researchers to study the minimum-mass 

design of truss structures with natural frequency constraints. Grandhi and Venkayyat [41] 

presented a design optimization algorithm for structural weight minimization with multiple 

frequency constraints. Tong and Liu [42] presented an optimization procedure for the 

minimum weight optimization of truss structures subjected to constraints on stresses, natural 

frequencies, and frequency responses. Sedaghati et al. [43] compared the performance of the 

displacement and force methods to optimize truss and beam structures with frequency 

constraints. Lingyun et al. [44] used an enhanced genetic algorithm to optimize the truss 

shape problems. Gomes [45] investigated the performance of a particle swarm optimization 

(PSO) algorithm in truss optimization with frequency constraints. In a similar work, Miguel 

and Fadel Miguel [46] used the harmony search (HS) and the firefly algorithm (FA) to solve 

truss shape and size optimization with frequency constraints. Kaveh et al. [47] proposed 

enhanced forensic-based investigation (EFBI) algorithm for weight minimization of truss 

structures with frequency constraints. Kaveh et al. [48] proposed improved slime mould 

algorithm (ISMA) to solve dome-shaped truss optimization problems with frequency 

constraints. Kaveh and Ilchi Ghazaan [49] used the vibrating particles system (VPS) 

algorithm for truss optimization with multiple natural frequency constraints. Kaveh and 

Zolghadr [50] presented a study where the cyclical parthenogenesis algorithm (CPA) was 

employed for layout optimization of truss structures with frequency constraints. Kaveh and 

Zolghadr [51] reviewed different metaheuristic optimization techniques utilized for 

structural optimization problems with frequency constraints. Recently, Kaveh et al. [52] 

studied the performance of some metaheuristics in frequency-constrained truss. In this 

paper, a quantum version of the TLBO algorithm is developed. The effectiveness of the 

proposed algorithm is investigated through two truss optimization problems with multiple 

frequency constraints. The results are compared with those of the standard TLBO and some 

other methods reported in the literature. 
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The rest of this paper is organized as follows: In section 2, first, a brief explanation of the 

TLBO and an overview of the Quantum mechanics principles with QTLBO formulation are 

presented. Next, the QTLBO algorithm steps and its flowchart are presented. In Section 3, 

various design examples are assessed. Finally, Section 4 concludes the results of the paper 

and future works. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Teaching-learning-based optimization (TLBO) algorithm 

TLBO, which is derived from the traditional education process in classrooms, includes two 

main parts. The first part is related to selecting the best solution (teacher) and sharing 

knowledge between the teacher and other solutions in the teacher phase. The second one 

determines the learner’s process to find better solutions by using knowledge between a 

particular candidate and the accidentally selected one. These two parts play leading roles in 

the TLBO algorithm. Intensification and diversification are guaranteed in the teacher and 

learner phases, respectively. 

The optimization process of TLBO starts with a set of random populations called 

students. After the primary evaluation of solutions, the best solution is assumed to be the 

teacher. The knowledge is shared between the teacher and other solutions in the teacher 

phase. The newly updated solutions are evaluated, and the better solutions are chosen and 

replaced with the old ones. After that, each solution’s awareness is updated via sharing 

featuring another randomly selected solution. Like the teacher step, a replacement strategy is 

applied to keep the old learners or replace them with newly generated ones after the learner 

phase. The TLBO algorithm steps are presented and formulated as follows [10]: 

Step one (forming the initial population): In the TLBO algorithm, the initial candidate 

solutions can be considered a class with nS students. The set of randomized students (S) can 

be produced through the following equation: 

 

𝑆 = 𝐿𝑏 + (𝑈𝑏 − 𝐿𝑏) × 𝑟𝑎𝑛𝑑(𝑛𝑆, 𝑛𝑉𝑎𝑟) (1) 

 

where nS is the number of students, nVar is the number of design variables, and Lb and Ub 

are the lower and upper bound vectors of the design variables. 

Step two (teacher phase): First, the students are evaluated, and their corresponding 

penalized objective function vector (𝑃𝐹𝑖𝑡) is generated. Next, the best student (the student 

with the best-penalized objective function value) is chosen as the teacher (T). A step size 

updates the students toward their teacher. The step size is obtained based on the teacher’s 

knowledge and the average knowledge of all the students (AveS). The teacher phase is 

formulated as follows: 

 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒
𝑖
= 𝑇 − 𝑇𝐹𝑖 × 𝐴𝑣𝑒𝑆  

𝑛𝑒𝑤𝑆 = 𝑆 + 𝑟𝑎𝑛𝑑𝑖,𝑗 × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 (2) 

𝑖 = 1,2,… , 𝑛𝑆 and 𝑗 = 1,2,… , 𝑛𝑉𝑎𝑟  
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The term of  𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖 is the step size of 𝑖𝑡ℎ student, 𝑛𝑒𝑤𝑆 is the vector of new students, 

𝑟𝑎𝑛𝑑𝑖,𝑗is a random number chosen from the interval of [0, 1] and the teacher factor ( 𝑇𝐹𝑖) is 

considered to change the effect of the teacher’s knowledge on the class’s average, which can 

be either 1 or 2. The value of 𝑇𝐹𝑖 is not given as an input to the algorithm, and the algorithm 

randomly decides its value. The schematic generation of new solutions in the teacher phase 

of TLBO presented in Fig. 1 reveals that the probable region of new solutions is likely 

between two vectors of the current solution (S) and randomized step size. Adopting a 

strategy like hybridization or other improvements mentioned in QTLBO might be beneficial 

for exploring a broad probable region of solution space. 

 

 
Figure 1. A schematic of generating a new position in the TLBO at the teacher phase 

 

Step three (replacement strategy): In this step, newly generated students are evaluated 

and replaced with their corresponding old ones in a simple greedy manner. In this way, the 

newly generated student with a better-penalized objective function is preferred to his 

corresponding old one. Therefore, a new class with 𝑛𝑆 students is formed. 

Step four (learner phase): In the learner phase, firstly, each student randomly chooses 

another one (Srs) except himself. Next, the student shares his knowledge with the randomly 

selected one. The student moves toward the other selected student if the other selected one 

has more knowledge than him (𝑃𝐹𝑖𝑡𝑖 < 𝑃𝐹𝑖𝑡𝑟𝑠). The learner phase can be formulated as 

follows: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒
𝑖
= {

𝑆𝑖 − 𝑆𝑟𝑠;  𝑃𝐹𝑖𝑡𝑖 < 𝑃𝐹𝑖𝑡𝑟𝑠
𝑆𝑟𝑠 − 𝑆𝑖;  𝑃𝐹𝑖𝑡𝑖 ≥ 𝑃𝐹𝑖𝑡𝑟𝑠

  

𝑛𝑒𝑤𝑆 = 𝑆 + 𝑟𝑎𝑛𝑑𝑖,𝑗 × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 (3) 

𝑖 = 1,2,… , 𝑛𝑆 and 𝑗 = 1,2,… , 𝑛𝑉𝑎𝑟  
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Figure 2. The pseudo-code of the TLBO 

 

Step five (replacement strategy): The replacement strategy is performed again. 

Step six (termination criteria): If the algorithm’s termination criterion is satisfied, the 

algorithm is terminated. Otherwise, go to step two. The pseudo-code of the TLBO algorithm 

is provided in Fig. 2. 

 

2.2 Quantum formulation 

Compared to classical mechanics, Quantum mechanics provide a theoretical and probable 

definition of particle location in space. Hence, the wave function Ψ(𝑥, 𝑡), of the particle, is 

obtained by solving the Schrödinger equation [53]: 

 

iħ
∂Ψ

∂t
= −

ħ2

2m

∂2Ψ

∂2t
+ VΨ (4) 

 

which 𝑖 is the square root of -1, V is the potential energy function, and ħ is the Plank’s 

constant- or rather, and his original constant (h) divided by 2π: 

 

ħ =
ℎ

2𝜋
= 1.054573 × 10−34 𝑗𝑠 (5) 

 

The Schrödinger equation has the same role in Newton’s second law 

As Born’s statistical interpretation of wave function says that |Ψ(𝑥, 𝑡) |2 gives the 

probability of finding the particle at point x, at time t: 

 

|Ψ(𝑥, 𝑡) |2 𝑑𝑥 = {
probability of finding the particle
between 𝑥 and 𝑥 + 𝑑𝑥 at time t

} (6) 
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Figure 3 shows a typical wave function. It would be pretty likely to find the particle in 

point A’s vicinity and relatively unlikely to find it near point B because the particle’s got to 

be somewhere.  

 

 
Figure 3. A typical wave function 

 

The Schrodinger equation can be solved by the method of separation of variables.  

 

Ψ(𝑥, 𝑡) = 𝜓(𝑥). 𝜑(𝑡) (7) 

 

where 𝜓 is a function of x alone, and 𝜑 is a function of t alone. The process of separation 

creates the Eq. (8): 

 

iħ
1

𝜑

𝑑𝜑

𝑑𝑡
= −

ħ2

2m

1

𝜓

𝑑2𝜓

𝑑𝑥2
+ 𝑉 = 𝐸  (8) 

 

The second part of Eq. (8) is called the time-independent Schrodinger equation. It is 

necessary to specify the potential function V(x) to solve Eq. (8). One of the most well-known 

potential functions is the one-dimensional Delta potential function, which uses the Dirac 

delta function definition. After solving the time-independent Schrodinger equation, we can 

calculate each particle’s existence probability in quantum space. The Dirac delta function, 

𝛿(𝑥), is defined as follows: 

 

𝛿(𝑥) = {
0 if 𝑥 ≠ 0
∞ if 𝑥 = 0

} with ∫ 𝛿(𝑥)𝑑𝑥 = 1
+∞

−∞
 (9) 

 

This function is an infinitely narrow spike at the origin, whose area is equal to unity (see 

Fig. 4). 
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Figure 4. The Dirac delta function 

 

Notice that 𝛿(𝑥 − 𝑎) would be a spike of a unit area at the point a. If we multiply 

𝛿(𝑥 − 𝑎) by an ordinary function f(x), it is the same as multiplying by f (a) [53]: 

 

𝑓(𝑥) 𝛿(𝑥 − 𝑎) = 𝑓(𝑎) 𝛿(𝑥 − 𝑎) (10) 

 

Since the product is zero except at point a. In particular, 

 

∫ 𝑓(𝑥) 𝛿(𝑥 − 𝑎)𝑑𝑥 = ∫ 𝑓(𝑎) 𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑓(𝑎)
+∞

−∞

+∞

−∞

 (11) 

 

Let us consider the potential of the form: 

 

𝑉(𝑥) = −𝛼 𝛿(𝑥) (12) 

 

where 𝛼 is constant. After replacing Eq. (8) with Eq. (12),  The Schrodinger equation reads: 

 

−
ħ2

2m

𝑑2𝜓

𝑑𝑥2
− 𝛼 𝛿(𝑥)𝜓 = 𝐸𝜓 (13) 

 

or 

 

𝑑2𝜓

𝑑𝑥2
+ 𝑘2𝜓 = 0 (14) 

 

where 

 

𝑘 = √−2𝑚𝐸 ħ2⁄  (15) 

 

This potential yields both bound states (E < 0) and scattering states (E > 0); we will look 

first at the bound states. In the region x < 0, V(x) = 0, and E is negative, by assumption, so k 

is real and positive. The general solution to Eq. (14) is 
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𝜓 = 𝐴𝑒−𝑘𝑥 + 𝐵𝑒𝑘𝑥 (16) 

 

In Eq. (16), the first term blows up as x→ −∞, so we must choose A = 0 

 

𝜓 = 𝐵𝑒𝑘𝑥 , 𝑥 < 0 (17) 

 

In the region x > 0, V(x) is again zero, and the general solution is of the form: 

 

𝜓 = 𝐶𝑒−𝑘𝑥 + 𝐷𝑒𝑘𝑥 (18) 

 

This time it is the second term that blows up (as x→ +∞), so 

 

𝜓 = 𝐶𝑒−𝑘𝑥, 𝑥 > 0 (19) 

 

It remains only to stitch these two functions together, using the appropriate boundary 

conditions at  𝑥 = 0: 

1. 𝜓 is always continuous, and 

2. 𝑑𝜓/𝑑𝑥 is continuous except at points where the potential is infinite. 

In this case, the first boundary condition indicates that C = B, so 

 

𝜓(𝑥) = {
𝐵𝑒𝑘𝑥,           𝑥 < 0

𝐵𝑒−𝑘𝑥, 𝑥 > 0
} (20) 

 

First, we consider a particle in one-dimensional space. With point p (local attractor) at the 

center of the potential well, the potential energy of the particle in a one-dimensional Delta 

potential well is represented as: 

 

𝑉(𝑥) = −𝛼 𝛿(𝑥 − 𝑝) = −𝛼 𝛿(𝑦) (21) 

 

Letting 𝑥 − 𝑝 = 𝑦, with m being the mass of the particle. The idea is to integrate the 

Schrodinger equation, from −𝜀 to +𝜀, and then take the limit as 𝜀 → 0: 

 

∫ (−
ħ2

2m

𝑑2𝜓(𝑦)

𝑑𝑦2
− 𝛼 𝛿(𝑦)𝜓(𝑦))𝑑𝑦

+𝜀

−𝜀

= ∫ (𝐸𝜓(𝑦))𝑑𝑦 = 0
+𝜀

−𝜖

  

𝜓′(0+) − 𝜓′(0−) = −𝛼
2𝑚

ħ2
𝜓(0) (22) 

−2𝐵𝑘 = −𝛼
2𝑚

ħ2
𝐵  

 

Thus: 

 

𝑘 =
𝛼𝑚

ħ2
 

(23) 

𝐸 = 𝐸0 = −
ħ2𝑘2

2m
= −

𝛼2𝑚

2ħ2
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Determining the constants so that the function 𝜓(𝑦) satisfy normalization condition 

 

∫ |𝜓(𝑦)|2𝑑𝑥 =
𝐵2

𝑘
= 1

+∞

−∞

 

(24) 

B = √𝑘 , 𝐿 =
1

𝑘
=
ħ2

𝛼𝑚
 

 

L is related to the characteristic length of the delta potential well, which determines each 

particle’s search scope. It means the domain of changes of each particle can be recognized 

by an interval on both sides of the mean best point (𝑝𝑚𝑒𝑎𝑛). This point is the mean of all 

particles’ dimensions. We can then represent the normalized wave function as   

 

𝜓(𝑦) =
1

√𝐿
𝑒−

|𝑦|
𝐿  (25) 

 

Evaluating fitness needs precise information about the position of the body. However, the 

quantum state function 𝜓(𝑦)  or |𝜓(𝑦)|2  gives the probability density function that the 

particle appears at position 𝑦 relative to 𝑝. Thus one needs to calculate the classical state 

from the collapsing quantum state. The procedure of simulation is described as follows. 

Assume 𝑠, which is the random number on (0,1/𝐿), is the probability of the existence of a 

quantum body in a particular position p [53]. 

 

𝑠 = 𝑟𝑎𝑛𝑑𝑜𝑚 (0,
1

𝐿
) =

1

𝐿
𝑟𝑎𝑛𝑑𝑜𝑚(0,1) =

1

𝐿
. 𝑢  

𝑠 = |𝜓(𝑦)|2 =
1

𝐿
 . 𝑒−2

|𝑦|
𝐿  (26) 

𝑢 = 𝑒−2
|𝑦|
𝐿  →  |𝑦| = ±

𝐿

2
ln(

1

𝑢
) →  𝑥 − 𝑝 = ±

𝐿

2
ln(

1

𝑢
)  

 

In the above equation, p, which is probably the particle’s location in quantum space, is a 

local attractor. The local attractor is used to define a new randomized location between the 

best solution and the current one for better diversification in each iteration. Also, u is a 

random number in the interval of  (0, 1), which determines the existence probability of the 

selected local attractor point (p) as a solution. The length of the potential well (L) is equal to 

a fraction of the distance between the mean best (𝑝𝑚𝑒𝑎𝑛) and current position of the particle 

(𝑥𝑖
𝑜𝑙𝑑) which provides efficient moving toward a probable optimal solution. Then: 

 

𝑝𝑚𝑒𝑎𝑛 =
1

𝑛
. (𝑥1

𝑜𝑙𝑑 + 𝑥2
𝑜𝑙𝑑 +⋯+ 𝑥2𝑛

𝑜𝑙𝑑) (27) 

𝐿 = 2𝛽. |𝑝𝑚𝑒𝑎𝑛 − 𝑥
𝑜𝑙𝑑| (28) 

 

From the substitution of Eqs. (26) by (28), we can obtain the following general equation 

to update the position of the particles: 
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𝑥𝑖
𝑛𝑒𝑤 = 𝑝 ± 𝛽. |𝑝𝑚𝑒𝑎𝑛 − 𝑥𝑖

𝑜𝑙𝑑|. ln(
1

𝑢
) (29) 

 

which i=1, 2, 3,… is the number of particles, 𝑥𝑜𝑙𝑑  and  𝑥𝑛𝑒𝑤  are the position of particles 

before and after updating, respectively. The new equation (Eq. (29)) plays a leading role in 

the quantum vision of a population-based algorithm. In Eq. (29), the 𝑢 are random numbers 

between [0, 1]. Also, the coefficient of 𝛽  In Eq. (29) controls the convergence of the 

algorithm. It starts from 1 to 0.5 from the first iteration to the maximum iteration. 

The behavior of a single particle in a quantum framework depends on how the β value is 

selected. Therefore, random simulation is performed to assess the sensitivity analysis. The 

value of β for simulations is assumed to be in the range [0.5, 2.1], and the maximum number 

of iterations is equal to the number of steps required to converge to preassumed p. In this 

simulation, the value of 𝑝 = 0 and the particle’s position in the first step are assumed to be 

𝑥0 = 1000. When the random simulation is performed on Matlab, the logarithmic value of 

the current position 𝑥𝑛 on the vertical axis is displayed versus the number of iterations on 

the horizontal axis. As shown in Figures 5 to 7, the new positions of the solutions 𝑥𝑛 

converge to assumed values of 𝑝 if β ≤1.775; otherwise, do not converge to p. 

 

 
Figure 5. Changes of ln|(𝑝 − 𝑥𝑛)| relative to the number of iterations for different values of β 
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Figure 6. Changes of ln|(𝑝 − 𝑥𝑛)| relative to the number of iterations for different values of β 

 

 
Figure 7. Changes of ln|(𝑝 − 𝑥𝑛)| relative to the number of iterations for different values of β 

 

It should be noted that the β parameter strongly converges the algorithm process in small 

quantities. Therefore, to ensure convergence, β should have values close to 0.5 at the end of 

the algorithm iterations. In contrast, β in the initial steps provides higher values to achieve 

the appropriate divergence for effective search in the algorithm. Conclusively, the parameter 
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of β is assumed to decrease gradually from 1.0 to 0.5, which guarantees convergence in the 

final iterations besides divergence in the initial steps of the algorithm. 

 

𝛽 = 1 − (1 − 0.5) ∗ (
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑛
) (30) 

 

2.3 Quantum formulation 

As an improved optimization algorithm, QTLBO, recently proposed by Kaveh et al., uses 

quantum-behaved particles’ features to enhance the performance of TLBO in solving the 

NP-hard problems, which have many local optimum spots in search space [37]. The teacher 

phase of TLBO is modified using the quantum formulation obtained from solving the time-

independent Schrodinger differential equation in the delta-potential function to update the 

solution candidates’ positions. Indeed, in the current version of TLBO, after defining the 

teacher in each iteration, all the current solutions with the randomized step size move toward 

the best solution using teacher factor parameter 1 or 2. In the early stages of the optimization 

process, TLBO reveals the best diversification because of differences between the best 

solution and the best mean solution. However, in the late iterations, decreasing the 

difference between the teacher and mean solution at the teacher phase besides decreasing the 

solution differences because of convergence cause less dynamic solutions in both phases of 

TLBO. Any solutions updates in TLBO use the randomized step size defined with the 

difference between the teacher solution and the mean best one. Hence, it is necessary to 

mention that the old solutions in each iteration of the teacher phase remain fixed without any 

local alteration till the new solution formulation creates the new ones. This study proposes 

changing the teacher phase of TLBO and defining a local attractor between the best solution 

and the other using the quantum-behaved particle formulation. The quantum teacher phase 

concept in QTLBO increases the chance of finding a better solution due to better 

diversification and intensification than TLBO because of quantum searching and the 

inclination toward the best solution. Any solutions updates in TLBO use the randomized 

step size defined with the difference between the teacher solution and the mean best one.  

Quantum vision of teacher, which utilizes local attractors (p), produce an efficient local 

search around the point of the best solution. Also, considering local attractors, how to define 

their formulation improves the diversification of the algorithm while converging to the best 

solution. For instance, QECBO defines the local attractors (p) same to updated solutions of 

ECBO [21], while QTLBO utilizes Eq. (31) to define a probable solution between the best 

solution and the current candidate, which likely has more chance to be a more probable 

better solution than the current one. In Eq. (31) the 𝑐1 and 𝑐2 are random numbers between 

[0, 1]. 

 

𝑝𝑖,𝑙𝑜𝑐𝑎𝑙 𝑎𝑡𝑟𝑎𝑐𝑡𝑜𝑟 =
(𝑐1.  𝑥𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑐2.  𝑥𝐺𝑙𝑜𝑏𝑎𝑙 𝐵𝑒𝑠𝑡 )

𝑐1 + 𝑐2
 (31) 

 

In terms of providing a better chance to experience large or small increment, ln(
1

𝑢
) 

fluctuates approximately in the range of (0, 10). Figure 8 shows the changes of  ln(
1

𝑢
) on the 

vertical axis versus 1000 random number of 𝑢 in the range of [0, 1] on the horizontal line. 
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The recent term of ln(
1

𝑢
) in Eq. (29) undergoes different values, which could surge the 

diversification rate of QTLBO. Figure 9 shows the dynamic of 𝛽. ln(
1

𝑢
) for a two-dimension 

problem in 100 consecutive iterations. In Eq. (29), the term of 𝛽. ln(
1

𝑢
) creates the various 

increments that make current solutions escape from local optimums. This new approach 

helps the solutions to experience all promised regions between the best and worst solutions. 

As the results of this paper will reveal, QTLBO seems capable of exploring all space of 

solution more efficiently than the standard version of TLBO. 

 

 
Figure 8. Changes of ln(

1

𝑢
) for 100 randomly generated numbers of 𝑢 

 

 
Figure 9. Dynamic of ±𝛽. ln(

1

𝑢
) for a two-dimensional assumed problem in 100 iterations 

 

The schematic representations of Eq. (29) are shown in Figs. 10 and 11. As mentioned 
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above, the broad probable region of QTLBO in Figs. 10 and 11, due to the distinct 

formulation of quantum behaved particle, remarkably explores all solution domains and 

helps to escape from local optimum and find a robust solution. The steps of the QTLBO 

method are as follows: 

Step one (Initialization): Same as the TLBO algorithm, the initial candidate solutions can 

be considered as a class with 𝑛𝑆 students. The set of students (𝑆) can be produced through 

the following equation: 

 

𝑆 = 𝐿𝑏 + (𝑈𝑏 − 𝐿𝑏) × 𝑟𝑎𝑛𝑑(𝑛𝑆, 𝑛𝑉𝑎𝑟) (32) 

 

where 𝑛𝑆 is the number of students, 𝑛𝑉𝑎𝑟 is the number of design variables, and 𝐿𝑏 and 𝑈𝑏 

are the lower and upper bound vectors of the design variables. 

 

 
Figure 10. A schematic of generating a new position in the QTLBO using 

(𝑥𝑖
𝑛𝑒𝑤 = 𝑝 + 𝛽. |𝑝𝑚𝑒𝑎𝑛 − 𝑥𝑖

𝑜𝑙𝑑|. ln(
1

𝑢
)) at the teacher phase 
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Figure 11. A schematic of generating a new position in the QTLBO using 

(𝑥𝑖
𝑛𝑒𝑤 = 𝑝 − 𝛽. |𝑝𝑚𝑒𝑎𝑛 − 𝑥𝑖

𝑜𝑙𝑑|. ln(
1

𝑢
)) at the teacher phase 

 

Step two (quantum teacher phase): After the students’ evaluation, their corresponding 

penalized objective function vector (PFit) is generated. After that, the best student (the 

student with the best-penalized objective function value) is chosen as the quantum teacher 

(T). A quantum step size updates the students toward their quantum teacher. The step size is 

obtained based on the difference between the quantum teacher and the mean solution of all 

other students (AveS). The teacher phase can be formulated as follows: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖 = |𝐴𝑣𝑒𝑆 − 𝑆| × 𝛽  (33) 

𝑛𝑒𝑤𝑆 = 𝑝 + ln(
1

𝑟𝑎𝑛𝑑()
) × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 (34) 

𝑝 =
(𝑐1. 𝑆 + 𝑐2. 𝑇)

𝑐1 + 𝑐2
 ;  𝑐1, 𝑐2 = 𝑟𝑎𝑛𝑑() (35) 

 

where 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖  is the step size of 𝑖-th student, and 𝑛𝑒𝑤𝑆 is the vector of new students. 

Also, the parameters of 𝑐1, 𝑐2, and 𝑟𝑎𝑛𝑑() are random numbers chosen from the interval of 

[0, 1]. New solutions are always established between a particle and the best one formed in 

the teacher phase to provide local changes for each particle and a high probability of 

improving the fitness value. It is assumed that A parameter like 𝑃𝑟𝑜 = 0.3  is introduced to 

control whether each solution’s component must be changed or not. The formulation of this 

mechanism is as follows: 
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𝑆𝑛𝑒𝑤 =

{
  
 

  
 𝑇 + (1 − (

𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

1

6
) ∗ (𝐿𝑏 + 𝑟𝑎𝑛𝑑. (𝑈𝑏 − 𝐿𝑏)); 𝑟1 ≤ 0.3, 𝑟2 ≤ 0.5

𝑇 − (1 − (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

1

6
) ∗ (𝐿𝑏 + 𝑟𝑎𝑛𝑑. (𝑈𝑏 − 𝐿𝑏)); 𝑟1 ≤ 0.3, 𝑟2 ≥ 0.5

𝑆𝑜𝑙𝑑;                                                                                                     𝑟1 > 0.3

𝑟1, 𝑟2, and 𝑟3 are random numbers in range of [0, 1]                           }
  
 

  
 

  (36) 

 

Step three (replacement strategy): In this step, newly generated students are evaluated 

and replaced with their corresponding old ones in a simple greedy manner. In this way, the 

newly generated student with a better penalized objective function value is preferred to his 

corresponding old one. Therefore, a new class with nS students is formed.  

Step four (learner phase): The learner phase is performed similar to TLBO. 

Step five (replacement strategy): The replacement strategy is performed again.  

Step six (termination criteria): If the termination criterion of the algorithm is satisfied, the 

algorithm is terminated. Otherwise, go to step two. The pseudo-code of the QTLBO 

algorithm is provided in Fig. 12. 

 

 
Figure 12. The pseudo-code of the QTLBO 

 

2.4 Mathematical formulation of the optimization problem 

In a truss sizing optimization problem with frequency constraints, the aim is to minimize the 

total weight of the structure while satisfying some constraints on natural vibration 

frequencies. The cross-sectional areas of structural members are considered as continuous 

design variables. Furthermore, the layout of the structure is pre-defined and kept unchanged 

during the optimization process. The mathematical formulation of the optimization problem 
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is as follows [54]: 

 

Find: {𝑋} = [𝑥1, 𝑥2, … , 𝑥𝑚] (37) 

to minimize: 𝑃({𝑋}) = 𝑓({𝑋}) × 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) (38) 

subject to: {

𝜔𝑗 ≥ 𝜔𝑗
∗ for some natural vibration frequencies 𝑗

𝜔𝑘 ≤ 𝜔𝑘
∗  for some natural vibration frequencies 𝑘
𝐿𝑏,𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑏,𝑖;  𝑖 = 1,2,… ,𝑚

 (39) 

 

where {𝑋} denotes the vector of design variables, including sizing design variables, 𝑚 is the 

number of design variables, which is selected considering the member-grouping 

configuration, 𝑥𝑖  is the cross-sectional area of the structural members of the 𝑖-th member 

group, 𝑓({𝑋}) is the objective function of the optimization problem to be minimized, which 

represents the total weight of the structure in a weight minimization  problem, 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) 

is the penalty function which is used to handle the problem constraints, and 𝑃({𝑋}) is the 

penalized objective function, 𝐿𝑏,𝑖 and 𝑈𝑏,𝑖 are the lower and upper bounds of the 

crosssectional area of the structural members of the 𝑖-th member group, respectively, 𝜔𝑗 and 

𝜔𝑘 are the 𝑗-th and the 𝑘-th natural vibration frequencies of the structure, respectively, 𝜔𝑗
∗ is 

the lower bound of the 𝑗-th natural vibration frequency of the structure, and 𝜔𝑘
∗  is the upper 

bound of the 𝑘-th natural vibration frequency of the structure. The objective function is 

considered to be the total weight of the structure and can be defined as follows: 

 

𝑓({𝑋}) = 𝑊({𝑋}) =∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝐸

𝑖=1

 (40) 

 

where 𝜌
𝑖
, 𝐴𝑖, and 𝐿𝑖 are the material density, cross-sectional area, and length of the 𝑖-the 

structural member, respectively, 𝑛𝐸 is the number of structural members of the structure, 

and 𝑊({𝑋}) is the total weight of the structure. Various strategies have been suggested to 

handle constraints in optimization problems, one of the most popular of which is penalizing 

strategies. The main idea of penalizing strategies is to transform a constrained optimization 

problem into an unconstrained one by penalizing the infeasible solution and extending an 

unconstrained objective function [55]. Here, a dynamic penalty function is used to tackle the 

violated constraints [56]: 

 

𝑓
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

(𝑋) = (1 + ɛ1 × 𝜐)
ɛ2 , 𝜐 =∑ 𝜐𝑖

𝑛𝐶

𝑖=1

 (41) 

 

where 𝑛𝐶 is the number of constraints of the problem, ɛ1 and ɛ2 are the penalty parameters 

that affect the severity of violated constraints, and 𝜐  denotes the sum of the constraint 

violations. The value of 𝜐𝑖 is set to zero if the 𝑖-th constraint is satisfied, while in the case of 

a violated constraint, it is selected considering the severity of the violation. The 

mathematical expression of 𝜐𝑖 is as follows: 
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𝜐𝑖 = {
|1 −

𝜔𝑖

𝜔𝑖
∗|  if the 𝑖 − th frequency constraint is violated

0                                                                                otherwise

 (42) 

 

Dynamic penalty functions take into account the progress of the optimization process so 

that penalty is imposed at a dynamic or increasing rate [55]. This means that a low degree of 

penalty is imposed at the beginning of the search process. However, as the search process 

progresses, the degree of the penalty also gradually increases [57]. Such a dynamic strategy 

encourages the diversification in the search space (i.e., more exploration) in the early 

iterations of the optimization process, but more emphasis on the intensification of the best 

solutions found (i.e., more exploitation) in the last iterations [38]. The parameters ɛ1 and ɛ2 
control how much an infeasible solution is penalized. The severity of penalizing is very 

sensitive to these parameters. Hence, setting the parameters ɛ1 and ɛ2 is a challenging task 

and requires many preliminary trials [58]. Indeed, if they are chosen too small, feasible 

regions of search space may not be explored effectively, and even the algorithm may never 

converge toward a feasible solution. On the other hand, if they are too large, premature 

convergence may occur [59]. In this study, a constant value for the parameter ɛ1 is chosen, 

whereas the parameter ɛ2 increases monotonically with the number of iterations. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Numerical examples 

Two well-known dome structure optimization problems with multiple frequency constraints 

are considered from the literature to assess the developed algorithm’s performance. The 

optimization problems are as follows: (a) size optimization of a 600-bar dome truss with 25 

design variables; and (b) size optimization of a 1180-bar dome truss with 59 design 

variables. For each mentioned problem, the QTLBO algorithm results are compared with 

those of TLBO and other optimization algorithms in the literature. Convergence histories of 

the problems are provided, and an over-scaled part is attached to each convergence curve to 

display curves well. Also, optimized results at different stages of the optimization process 

are provided for each problem, which allows comparing the algorithms’ performance. Ten 

independent runs have been executed to achieve a fair comparison of the algorithms’ 

performance, and the results of the best ones have been reported. For all runs, the initial 

population is generated randomly. The maximum number of objective function evaluations 

(𝑀𝑎𝑥𝑁𝐹𝐸𝑠) is considered as the stopping criterion of the algorithm.  

 

3.1.1 A 600-bar dome truss 

Figure 13 schematically shows the structure of a 600 bars single-layer dome. The whole 

structure consists of 216 nodes and 600 elements. Figure 14 shows the typical sub-structure 

in more detail about how the nodes are numbered. Table 1 lists the nodal coordinates of the 

typical sub-structure in the Cartesian coordinate system. Each element of this sub-structure 

is considered a design variable. Therefore, the problem of the 600-bar dome is an 
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optimization problem with 25 design variables. The modulus of elasticity is 200 GPa, and 

the material density is 7850 kg/ m3 for all elements. A non-structural mass of 100 kg it 

attached to all free nodes as lumped mass. All elements’ minimum and maximum allowable 

area of cross-sections are assumed to be 1 and 100 cm2 , respectively. In the present 

problem, two frequency constraints are considered, 𝜔1 ≥ 5 Hz and 𝜔3 ≥ 7 Hz, which are 

related to the first and third modes of the structure in free vibration analysis. 

Kaveh et al. [62] proposed a formulation to swiftly solve characteristic equations 

obtained from free vibration of the circulant symmetric structures based on optimal analysis 

and graph theory. In the cylindrical coordinate system, the structural matrices corresponding 

to a cyclic symmetric structure exhibit a unique pattern known as block circulant [22]. 

Circulant matrices can be expressed as the sum of Kronecker products in which the first 

components satisfy the commutative property of multiplication [51]. This property facilitates 

the block diagonalization of circulant matrices. Therefore, using this property of block 

circulant matrices, the initial generalized eigenvalue problem, derived from the free 

vibration analysis, is decomposed into highly smaller sub-eigenproblems [53]. This 

approach leads to the high accuracy of the free vibration analysis results and a significant 

decrease in computational time and memory usage compared to the existing classical 

eigenvalue solutions [22]. However, the present block-diagonalization technique is suitable 

only for cyclic symmetric configurations. 

 

 
Figure 13. The 600-bar single-layer dome 
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Figure 14. Details of a sub-structure of the 600-bar single-layer dome 

 

Table 2 shows the optimal results obtained from different methods in the literature on the 

600-bar dome truss problem and the results of current and quantum versions of TLBO 

methods. Table 3 shows the frequency values at the first five-mode of 600 bars dome. A 

quick look at Table 2 shows that the improved method with the quantum framework has an 

acceptable comparative optimal solution compared to the minimum results in Table 2 in 10 

consecutive runs. The main reason is to utilize the quantum teacher with a better exploration 

rate in the last iterations than using the classical version of TLBO. The minimum optimal 

solution without violating the problem constraints is 6063.59 kg, related to the QTLBO 

method. 

Meanwhile, according to the results given in Table 2, the obtained optimal solution so far 

is 6065.811 kg related to the ST-JA method. Although the least optimal weight of the TLBO 

and QTLBO are approximately close, the worst and standard deviations obtained by 

QTLBO are remarkably more minor than those of the TLBO method. Regarding the 

performance improvement in Table 2, the statistical results section for the standard deviation 

and the worst response based on quantum behaved particles significantly reduce the values 

of statistical indices obtained from 10 consecutive runs. 

Figure 15 shows the distributed results obtained from 10 consecutive runs through the 

TLBO and QTLBO. What can be deduced from these diagrams is that in the quantum 

version, the solutions are significantly inclined towards the minimum solution. In other 

words, the solutions are focused on a region between the mean and minimum answers. 

Considering performance, Fig. 15 compares TLBO and QTLBO methods in ten consecutive 

runs and shows that the QTLBO method efficiently improves the classic version of TLBO to 

find a better performance. The value of penalized weight in the worst solution obtained with 

the QTLBO is much better and less than the conventional methods of TLBO, leading to a 

reduced standard deviation index and coefficient of variation 

The above performance causes that in Fig. 16 showing the history diagrams obtained 

from the average of 10 consecutive performances, the QTLBO gives better results than the 
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conventional TLBO during objective function evaluations. As shown in Table 3, none of the 

optimal obtained solutions violates the constraint. Results show that QTLBO could exhibit a 

better exploration than TLBO without any redundant parameter tuning. 

 
Table 1: Coordinates of the nodes of the 600-bar dome-like truss 

Node number Coordinates (x, y, z) (m) 

1 (1.0, 0.0, 7.0) 

2 (1.0, 0.0, 7.5) 

3 (3.0, 0.0, 7.25) 

4 (5.0, 0.0, 6.75) 

5 (7.0, 0.0, 6.0) 

6 (9.0, 0.0, 5.0) 

7 (11.0, 0.0, 3.5) 

8 (13.0, 0.0, 1.5) 

9 (14.0, 0.0, 0.0) 

 
Table 2: Comparison results of  TLBO and QTLBO methods for the 600-bar dome truss with 

different methods of literature (cm2) 

Element number 

(element nodes) 

ECBO-

Cascade 

[60] 

CBO 

[61] 

MDVC-

UPVS 

[62] 

PFJA 

[63] 
JA [64] 

ST-JA 

[64] 

This study 

TLBO QTLBO 

1 (1-2) 1.0299 1.2404 1.2575 1.1867 1.0703 1.3964 1.0634 1.2371 

2 (1-3) 1.3664 1.3797 1.3466 1.2967 1.2699 1.5177 1.5201 1.3390 

3 (1-10) 5.1095 5.2597 4.9738 4.5771 4.0174 5.5370 5.2091 5.0958 

4 (1-11) 1.3011 1.2658 1.4025 1.3356 1.0036 1.2549 1.3610 1.3948 

5 (2-3) 17.0572 17.2255 17.3802 18.3157 16.9565 16.7759 17.0588 16.8895 

6 (2-11) 34.0764 38.2991 37.9742 38.5097 39.2560 36.8528 36.7938 38.7177 

7 (3-4) 13.0985 12.2234 13.0306 13.5917 13.2920 12.8198 12.4260 12.7778 

8 (3-11) 15.5882 15.4712 15.9209 16.8824 15.1664 15.4141 15.2655 15.8387 

9 (3-12) 12.6889 11.1577 11.9419 13.8766 10.8041 12.0638 12.2102 11.5202 

10 (4-5) 10.3314 9.4636 9.1643 9.5286 8.9660 9.3500 9.3867 9.2533 

11 (4-12) 8.5313 8.8250 8.4332 9.4218 8.7332 8.2980 8.3280 8.2397 

12 (4-13) 9.8308 9.1021 9.2375 9.7643 8.8557 8.8205 8.7327 9.6497 

13 (5-6) 7.0101 6.8417 7.2213 7.2431 7.7360 7.4253 7.1844 7.2848 

14 (5-13) 5.2917 5.2882 5.2142 5.3913 5.1991 5.1621 5.0898 4.9730 

15 (5-14) 6.2750 6.7702 6.7961 6.7468 6.5265 6.6351 6.7874 6.4594 

16 (6-7) 5.4305 5.1402 5.2078 5.1493 5.1082 4.9351 5.3090 5.0868 

17 (6-14) 3.6414 5.1827 3.4586 3.8342 3.7784 3.5639 3.9638 3.5197 

18 (6-15) 7.2827 7.4781 7.6407 8.0665 7.8962 8.0435 7.3660 7.7938 

19 (7-8) 4.4912 4.5646 4.3690 4.2800 4.0664 4.2061 4.5322 4.3793 

20 (7-15) 1.9275 1.8617 2.1237 2.2509 2.3832 2.3310 2.1173 2.1781 

21 (7-16) 4.6958 4.8797 4.5774 4.5372 4.9196 4.4953 4.5101 4.3913 

22 (8-9) 3.3595 3.5065 3.4564 3.5615 3.1955 3.4287 3.6624 3.6701 
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23 (8-16) 1.7067 2.4546 1.7920 1.7744 1.9531 1.8660 2.0548 1.8443 

24 (8-17) 4.8372 4.9128 4.8264 4.6445 4.7961 4.9318 4.9345 4.7175 

25 (9-17) 2.0253 1.2324 1.7601 1.6141 1.3999 1.5022 1.3931 1.6930 

The Best weight (kg) 6140.51 6182.01 6115.10 6333.251 6082.889 6065.811 6075.15 6063.59 

Average weight (kg) 6175.33 6226.37 6119.95 6380.31 6090.345 6072.734 6457.10 6072.31 

The worst weight (kg) N/A N/A N/A N/A 6101.777 6084.749 7798.94 6081.48 

Standard deviation (kg) 34.08 60.12 16.23 47.396 6.455 6.182 637.95 5.00 

Maximum number of 

FE analyses 
20,000 20,000 18,000 25,000 12,000 12,000 20,000 20,000 

 
Table 3: Natural frequencies (Hz) of the optimal designs for the 600-bar dome 

Frequency number 

ECBO-

Cascade 

[60] 

CBO 

[61] 

MDVC-

UPVS 

[62] 

PFJA 

[63] 
JA [64] 

ST-JA 

[64] 

This study 

TLBO QTLBO 

1 5.001 5.000 5.000 5.0011 5.0052 5.0002 5.0035 5.0016 

2 5.001 5.000 5.000 5.0011 5.0052 5.0002 5.0035 5.0016 

3 7.001 7.000 7.000 7.0000 7.0002 7.0002 7.0002 7.000 

4 7.001 7.000 7.000 7.0000 7.0009 7.0006 7.0002 7.000 

5 7.002 7.001 7.000 7.0000 7.0009 7.0006 7.0015 7.000 

 

 

 

Figure 15. Comparison of the obtained structural weight in each independent run for the 600-bar 

dome 
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Figure 16. Convergence history of the TLBO and QTLBO for the 600-bar dome (average of 10 

runs) (𝑁𝑃 = 20) 

 

3.1.2 A 1180-bar dome truss 

The optimization problem of the 1180 bar dome truss is another example to evaluate the 

performance of the QTLBO method. Figure 17 depicts the schematic of the structure. This 

structure consists of 400 nodes and 1180 structural members. This dome’s generating sub-

structure is shown in Fig. 18 in more detail for numbering nodes. Each element of this sub-

structure is considered a design variable. Therefore, the 1180 dome truss structure is an 

optimization problem with 59 design variables. Table 4 shows the coordinates of nodes in a 

Cartesian coordinate system. In this case, the modulus of elasticity is 200 GPa, and the 

material density is 7850 kg/m3 for all elements. A non-structural mass of 100 kg is attached 

to all free nodes of the dome. 

All elements’ minimum and maximum allowable area of cross-sections are assumed to be 

1 and 100 cm2 , respectively. In the present problem, two frequency constraints are 

considered, 𝜔1 ≥ 7 Hz and 𝜔3 ≥ 9 Hz, which are related to the first and third modes of the 

structure in free vibration analysis. 

Due to the usage of quantum-behaved particles features in QTLBO, remarkable results 

have been obtained, like another case study mentioned in this paper. Accessing convenient 

optimal minimum values, which are better than those of the TLBO algorithm and some 

methods in the literature shown in Table 5, is one of the advantages of using a quantum 

framework. This framework provides accessing better solutions meanwhile searching more 

efficiently with appropriate convergence rates. In addition, other statistical indices such as 

mean and the worst solution have significantly improved besides standard deviation. The 

results of the current and quantum versions of the TLBO are given in Table 5. Table 6 shows 

the frequency values of the first to fifth free vibration modes of the 1180 bar dome, in which 

there is no violation of the constraints. 
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Figure 19 shows the results obtained from 10 consecutive runs for the  TLBO algorithms 

and their quantum version. As mentioned in the study of the results in Table 5, we expected 

the quantum version to provide better search capability and reduce the standard deviation by 

a reasonable amount, which is seen in the quality of the algorithm distributed results in the 

above figures. The inclination of the solution towards the least optimal answer and the 

significant weight reduction of the worst solution is a good help in detecting the practical 

improvement of the algorithms. Figure 20 shows the history diagram obtained from the 

average results of 10 consecutive independent runs. The average weight values obtained 

from the quantum version in all algorithm iterations are less than the current version of 

TLBO. 

 

 
Figure 17. The 1180-bar single-layer dome 

 

 
Figure 18. Details of a sub-structure of the 1180-bar single-layer dome 

 
Table 4: Coordinates of the nodes of the 1180-bar dome-like truss 
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Node number Coordinates (x, y, z) (m) Node number Coordinates (x, y, z) (m) 

1 (3.1181, 0.0, 14.6723) 11 (4.5788, 0.7252, 14.2657) 

2 (6.1013, 0.0, 13.7031) 12 (7.4077, 1.1733, 12.9904) 

3 (8.8166, 0.0, 12.1354) 13 (9.9130, 1.5701, 11.1476) 

4 (11.1476, 0.0, 10.0365) 14 (11.9860, 1.8984, 8.8165) 

5 (12.9904, 0.0, 7.5000) 15 (13.5344, 2.1436, 6.1013) 

6 (14.2657, 0.0, 4.6358) 16 (14.4917, 2.2953, 3.1180) 

7 (14.9179, 0.0, 1.5676) 17 (14.8153, 2.3465, 0.0) 

8 (14.9179, 0.0, -1.5677) 18 (14.9179, 2.2953, -3.1181) 

9 (14.2656, 0.0, -4.6359) 19 (13.5343, 2.1436, -6.1014) 

10 (12.9903, 0.0, -7.5001) 20 (3.1181, 0.0, 13.7031) 

 
Table 5: Comparison results of  TLBO and QTLBO methods for the 1180-bar dome truss with 

different methods of literature (cm2) 

Element number 

(element nodes) 
CBO [61] 

ECBO 

[61] 
VPS [62] 

MDVC-

UPVS 

[62] 

This study 

TLBO QTLBO 

1 (1-2) 13.0171 7.6678 6.8743 7.3691 6.2075 6.8443 

2 (1-11) 10.4346 11.1437 10.0230 9.3399 9.8913 9.8186 

3 (1-20) 3.0726 1.8520 4.4140 2.7203 2.0235 3.4713 

4 (1-21) 12.6969 14.5563 13.5515 13.2822 15.4007 13.9640 

5 (1-40) 3.5654 4.9499 1.8303 3.6758 5.3031 4.0370 

6 (2-3) 6.5190 6.8095 7.0824 6.1391 6.4202 6.1996 

7 (2-11) 7.4233 6.6803 6.3960 7.0964 6.7999 7.5473 

8 (2-12) 6.3471 6.7889 6.5646 6.0208 3.8638 6.0971 

9 (2-20) 2.3013 1.0630 2.3705 2.1225 3.9379 1.3435 

10 (2-22) 12.1936 9.1602 13.2621 12.3488 11.5361 12.1911 

11 (3-4) 7.2877 6.9891 7.0922 6.8578 9.6721 7.3537 

12 (3-12) 7.0961 6.9881 6.8079 5.7773 5.2983 5.6248 

13 (3-13) 6.5669 6.9555 6.3815 6.9931 4.7727 6.8738 

14 (3-23) 7.8257 7.5443 7.3122 7.3355 12.6813 6.4318 

15 (4-5) 8.6812 9.5431 8.7221 10.5464 8.4290 9.5515 

16 (4-13) 5.7888 6.9123 6.3680 6.9589 6.4138 6.7510 

17 (4-14) 21.1342 8.9891 7.3159 8.0977 8.9110 7.7054 

18 (4-24) 10.0502 6.8926 11.5749 7.7738 7.1333 7.8099 

19 (5-6) 12.9279 12.6128 14.7985 12.4614 10.9557 12.2147 

20 (5-14) 9.3212 8.1983 5.5174 7.8154 10.3955 8.1532 

21 (5-15) 10.1260 11.8358 15.7381 10.2039 54.5223 10.7008 

22 (5-25) 10.1358 9.7321 8.3419 8.9262 7.7235 9.1762 

23 (6-7) 15.8585 19.1650 17.5000 16.5275 16.1223 16.7267 

24 (6-15) 9.9672 10.4682 10.3084 9.0166 10.6541 11.0430 

25 (6-16) 14.8493 14.1178 15.1958 13.8204 13.6736 12.7295 

26 (6-26) 11.4909 11.14567 10.9395 11.4021 12.8061 11.9334 
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27 (7-8) 26.2359 23.4125 24.9421 24.2631 25.9787 24.6152 

28 (7-16) 13.8812 15.5167 13.9614 14.5494 11.8588 13.4045 

29 (7-17) 18.8857 16.6613 18.4153 17.7753 44.7192 19.0138 

30 (7-27) 14.0257 15.9631 14.4945 15.4594 12.1242 15.9277 

31 (8-9) 33.8826 37.0532 36.3529 34.1372 38.9405 34.8418 

32 (8-17) 25.7142 22.2937 19.6608 19.1254 15.2119 21.4674 

33 (8-18) 24.8644 22.7409 23.7259 24.1954 23.5875 22.1760 

34 (8-28) 19.8498 23.5624 22.0297 21.5899 35.1567 21.3054 

35 (9-10) 53.2630 47.7652 47.3286 49.4717 44.3518 48.1875 

36 (9-18) 22.7771 22.5066 22.9442 26.2915 27.4562 22.6174 

37 (9-19) 35.4230 34.6418 30.8229 33.7558 48.1280 34.3705 

38 (9-29) 57.5480 31.6492 33.1098 29.7608 33.9007 33.2805 

39 (10-19) 35.1385 32.7268 32.5526 34.0489 30.8445 35.2950 

40 (10-30) 10.7300 1.05206 1.7363 1.0024 1.0001 1.0331 

41 (11-21) 9.2401 11.3681 11.5271 9.0344 10.3408 9.8014 

42 (11-22) 5.2661 6.5512 8.4571 7.5316 7.1571 7.1106 

43 (12-22) 6.2415 6.3619 5.4136 6.3726 7.1878 6.3135 

44 (12-23) 4.4768 5.9296 7.1832 5.7643 5.8172 6.3825 

45 (13-23) 8.8846 7.8739 5.4066 6.7270 10.9891 7.1512 

46 (13-24) 7.3710 6.2794 6.2534 6.7021 7.5391 6.6035 

47 (14-24) 8.2595 7.6206 6.9383 7.8082 7.2565 8.7801 

48 (14-25) 7.6091 7.2937 10.6872 8.1225 8.7307 9.0923 

49 (15-25) 11.3030 10.5783 12.8005 10.1777 9.2994 11.8150 

50 (15-26) 13.8381 10.1173 10.2216 10.1825 9.4147 10.1750 

51 (16-26) 13.3654 15.1088 11.5330 13.4590 29.5867 12.8583 

52 (16-27) 13.1836 12.8251 11.6918 13.9788 14.1291 14.4375 

53 (17-27) 13.5793 17.4375 20.7566 18.1070 11.8872 17.1922 

54 (17-28) 10.0628 20.1153 18.1341 19.2212 26.4427 18.7209 

55 (18-28) 24.1197 24.2121 28.2882 23.4359 22.9082 25.5041 

56 (18-29) 24.2604 23.3175 24.2023 27.6479 21.8279 27.8431 

57 (19-29) 34.1389 34.6196 48.0180 33.6805 36.4962 29.3963 

58 (19-30) 38.0340 35.2970 35.6517 35.7035 67.0118 32.7544 

59 (20-40) 2.6689 8.8569 5.5956 4.7617 4.8047 5.3197 

The Best weight (kg) 40,985 37,984.39 38,699.14 37,451.77 44084.90 37579.57 

Average weight (kg) 42,019.10 38,042.15 38,861.82 37,545.53 49329.31 37817.94 

The worst weight (kg) N/A N/A N/A N/A 54768.63 38002.71 

Standard deviation (kg) 655.72 101.43 385.41 64.85 3005.51 150.28 

Maximum number of 

FE analyses 
9000 30,000 20,000 20,000 20,000 20,000 

 
Table 6: Natural frequencies (Hz) of the optimal designs for the 1180-bar dome 

Frequency number 
CBO 

[61] 

ECBO 

[61] 

VPS 

[62] 

MDVC-

UPVS 

[62] 

This study 

TLBO QTLBO 
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1 7.0017 7.0017 7.0019 7.0019 7.0041 7.000 

2 7.0017 7.0017 7.0019 7.0019 7.0041 7.000 

3 9.0141 9.0259 9.0289 9.0124 9.0065 9.0039 

4 9.0188 9.0259 9.0289 9.0251 9.0065 9.0039 

5 9.0188 9.071 9.1846 9.0251 9.2832 9.007 

 

 

 

 
Figure 19. Comparison of the obtained structural weight in each independent run for the 1180-

bar dome 

 

 
Figure 20. Convergence history of the TLBO and QTLBO for the 1180-bar dome (average of 10 
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runs) (𝑁𝑃 = 20) 
 

 

4. CONCLUSION 
 

In this paper, the Quantum Teaching-Learning-Based Optimization (QTLBO) is evaluated 

by optimizing the 600-bar and 1180-bar domes with multiple frequency constraints to 

improve the performance of TLBO. In QTLBO, the teacher phase was redefined using the 

quantum framework. A particular formulation was obtained from solving the time-

independent Schrodinger differential equation in the delta-potential-well function to update 

the solution candidates’ positions. Although QTLBO has a simple formulation and requires 

no internal parameter tuning similar to the former version of TLBO, it establishes the right 

balance between local and global search phases to escape from a local minimum in some 

NP-hard problems. In the teacher phase of QTLBO, the local attractors as possible solutions 

between the best solution and the others are introduced to explore the solution space. Both 

local attractors and new step size definition from the quantum framework guarantee 

diversification besides the inherent intensification. Results show that QTLBO outperforms 

the former version of TLBO and increases the chance of finding a better solution besides 

improving the statistical criteria compared to the current TLBO. Conclusively, using 

quantum-behaved particles could be a successful strategy to improve optimization 

algorithms’ performance. Finally, The quantum framework could be implemented by 

changing a part of an algorithm like QTLBO or hybridizing with a particular optimization 

method like QECBO.  
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